實(shí)數(shù)北師大版數(shù)學(xué)初二上冊(cè)教案8篇
作為一位兢兢業(yè)業(yè)的人民教師,常常要根據(jù)教學(xué)需要編寫教案,教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開展。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?下面是小編整理的實(shí)數(shù)北師大版數(shù)學(xué)初二上冊(cè)教案,歡迎閱讀與收藏。
實(shí)數(shù)數(shù)學(xué)初二上冊(cè)教案 1
一、內(nèi)容特點(diǎn)
在知識(shí)與方法上類似于數(shù)系的第一次擴(kuò)張。也是后繼內(nèi)容學(xué)習(xí)的基礎(chǔ)。
內(nèi)容定位:了解無理數(shù)、實(shí)數(shù)概念,了解(算術(shù))平方根的概念;會(huì)用根號(hào)表示數(shù)的(算術(shù))平方根,會(huì)求平方根、立方根,用有理數(shù)估計(jì)一個(gè)無理數(shù)的大致范圍,實(shí)數(shù)簡單的四則運(yùn)算(不要求分母有理化)。
二、設(shè)計(jì)思路
整體設(shè)計(jì)思路:
無理數(shù)的引入----無理數(shù)的表示----實(shí)數(shù)及其相關(guān)概念(包括實(shí)數(shù)運(yùn)算),實(shí)數(shù)的應(yīng)用貫穿于內(nèi)容的始終。
學(xué)習(xí)對(duì)象----實(shí)數(shù)概念及其運(yùn)算;學(xué)習(xí)過程----通過拼圖活動(dòng)引進(jìn)無理數(shù),通過具體問題的解決說明如何表示無理數(shù),進(jìn)而建立實(shí)數(shù)概念;以類比,歸納探索的方式,尋求實(shí)數(shù)的運(yùn)算法則;學(xué)習(xí)方式----操作、猜測(cè)、抽象、驗(yàn)證、類比、推理等。
具體過程:
首先通過拼圖活動(dòng)和計(jì)算器探索活動(dòng),給出無理數(shù)的概念,然后通過具體問題的解決,引入平方根和立方根的概念和開方運(yùn)算。最后教科書總結(jié)實(shí)數(shù)的概念及其分類,并用類比的方法引入實(shí)數(shù)的相關(guān)概念、運(yùn)算律和運(yùn)算性質(zhì)等。
第一節(jié):數(shù)怎么又不夠用了:通過拼圖活動(dòng),讓學(xué)生感受無理數(shù)產(chǎn)生的實(shí)際背景和引入的必要性;借助計(jì)算器探索無理數(shù)是無限不循環(huán)小數(shù),并從中體會(huì)無限逼近的思想;會(huì)判斷一個(gè)數(shù)是有理數(shù)還是無理數(shù)。
第二、三節(jié):平方根、立方根:如何表示正方形的邊長?它的值到底是多少?并引入算術(shù)平方根、平方根、立方根等概念和開方運(yùn)算。
第四節(jié):公園有多寬:在實(shí)際生活和生產(chǎn)實(shí)際中,對(duì)于無理數(shù)我們常常通過估算來求它的近似值,為此這一節(jié)內(nèi)容介紹估算的方法,包括通過估算比較大小,檢驗(yàn)計(jì)算結(jié)果的合理性等,其目的是發(fā)展學(xué)生的數(shù)感。
第五節(jié):用計(jì)算器開方:會(huì)用計(jì)算器求平方根和立方根。經(jīng)歷運(yùn)用計(jì)算器探求數(shù)學(xué)規(guī)律的活動(dòng),發(fā)展合情推理的能力。
第六節(jié):實(shí)數(shù)??偨Y(jié)實(shí)數(shù)的概念及其分類,并用類比的方法引入實(shí)數(shù)的相關(guān)概念、運(yùn)算律和運(yùn)算性質(zhì)等。
三、一些建議
1.注重概念的`形成過程,讓學(xué)生在概念的形成的過程中,逐步理解所學(xué)的概念;關(guān)注學(xué)生對(duì)無理數(shù)和實(shí)數(shù)概念的意義理解。
2.鼓勵(lì)學(xué)生進(jìn)行探索和交流,重視學(xué)生的分析、概括、交流等能力的考察。
3.注意運(yùn)用類比的方法,使學(xué)生清楚新舊知識(shí)的區(qū)別和聯(lián)系。
4.淡化二次根式的概念。
實(shí)數(shù)數(shù)學(xué)初二上冊(cè)教案 2
【教學(xué)目的】
精選學(xué)生在解一元二次方程有關(guān)問題時(shí)出現(xiàn)的典型錯(cuò)例加以剖析,幫助學(xué)生找出產(chǎn)生錯(cuò)誤的原因和糾正錯(cuò)誤的方法,使學(xué)生在解題時(shí)少犯錯(cuò)誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。
【課前練習(xí)】
1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時(shí),方程為一元一次方程;當(dāng) a_____時(shí),方程為一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,當(dāng)△_______時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根,當(dāng)△________時(shí),方程沒有實(shí)數(shù)根。
【典型例題】
例1 下列方程中兩實(shí)數(shù)根之和為2的方程是()
(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0
錯(cuò)答: B
正解: C
錯(cuò)因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實(shí)數(shù)根,故由△可知,方程B無實(shí)數(shù)根,方程C合適。
例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個(gè)實(shí)數(shù)根之和大于-4,則k的取值范圍是( )
(A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0
錯(cuò)解 :B
正解:D
錯(cuò)因剖析:漏掉了方程有實(shí)數(shù)根的前提是△≥0
例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個(gè)不相等的實(shí)根,求k的取值范圍。
錯(cuò)解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2
錯(cuò)因剖析:漏掉了二次項(xiàng)系數(shù)1-2k≠0這個(gè)前提。事實(shí)上,當(dāng)1-2k=0即k= 時(shí),原方程變?yōu)橐淮畏匠?,不可能有兩個(gè)實(shí)根。
正解: -1≤k<2且k≠
例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個(gè)實(shí)數(shù)根,當(dāng)x12+x22=15時(shí),求m的值。
錯(cuò)解:由根與系數(shù)的`關(guān)系得
x1+x2= -(2m+1), x1x2=m2+1,
∵x12+x22=(x1+x2)2-2 x1x2
=[-(2m+1)]2-2(m2+1)
?。? m2+4 m-1
又∵ x12+x22=15
∴ 2 m2+4 m-1=15
∴ m1 = -4 m2 = 2
錯(cuò)因剖析:漏掉了一元二次方程有兩個(gè)實(shí)根的前提條件是判別式△≥0。因?yàn)楫?dāng)m = -4時(shí),方程為x2-7x+17=0,此時(shí)△=(-7)2-4×17×1= -19<0,方程無實(shí)數(shù)根,不符合題意。
正解:m = 2
例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實(shí)數(shù)根,求m的取值范圍。
錯(cuò)解:△=[-2(m+2)]2-4(m2-1) =16 m+20
∵ △≥0
∴ 16 m+20≥0,
∴ m≥ -5/4
又 ∵ m2-1≠0,
∴ m≠±1
∴ m的取值范圍是m≠±1且m≥ -
錯(cuò)因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時(shí)就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時(shí),即m=±1時(shí),方程變?yōu)橐辉淮畏匠?,仍有?shí)數(shù)根。
正解:m的取值范圍是m≥-
例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負(fù)數(shù),求方程的整數(shù)根。
錯(cuò)解:∵方程有整數(shù)根,
∴△=9-4a>0,則a<2.25
又∵a是非負(fù)數(shù),∴a=1或a=2
令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2
∴方程的整數(shù)根是x1= -1, x2= -2
錯(cuò)因剖析:概念模糊。非負(fù)整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時(shí),還可以求出方程的另兩個(gè)整數(shù)根,x3=0, x4= -3
正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3
【練習(xí)】
練習(xí)1、(01濟(jì)南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2。
?。?)求k的取值范圍;
?。?)是否存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請(qǐng)說明理由。
解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<
∴當(dāng)k< 時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。
?。?)存在。
如果方程的兩實(shí)數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗(yàn)k= 是方程- 的解。
∴當(dāng)k= 時(shí),方程的兩實(shí)數(shù)根x1、x2互為相反數(shù)。
讀了上面的解題過程,請(qǐng)判斷是否有錯(cuò)誤?如果有,請(qǐng)指出錯(cuò)誤之處,并直接寫出正確答案。
解:上面解法錯(cuò)在如下兩個(gè)方面:
?。?)漏掉k≠0,正確答案為:當(dāng)k< 時(shí)且k≠0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。
?。?)k= 。不滿足△>0,正確答案為:不存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)
練習(xí)2(02廣州市)當(dāng)a取什么值時(shí),關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實(shí)數(shù)根 ?
解:(1)當(dāng)a=0時(shí),方程為4x-1=0,∴x=
?。?)當(dāng)a≠0時(shí),∵△=16+4a≥0 ∴a≥ -4
∴當(dāng)a≥ -4且a≠0時(shí),方程有實(shí)數(shù)根。
又因?yàn)榉匠讨挥姓龑?shí)數(shù)根,設(shè)為x1,x2,則:
x1+x2=- >0 ;
x1. x2=- >0 解得 :a<0
綜上所述,當(dāng)a=0、a≥ -4、a<0時(shí),即當(dāng)-4≤a≤0時(shí),原方程只有正實(shí)數(shù)根。
【小結(jié)】
以上數(shù)例,說明我們?cè)谇蠼庥嘘P(guān)二次方程的問題時(shí),往往急于尋求結(jié)論而忽視了實(shí)數(shù)根的存在與“△”之間的關(guān)系。
1、運(yùn)用根的判別式時(shí),若二次項(xiàng)系數(shù)為字母,要注意字母不為零的條件。
2、運(yùn)用根與系數(shù)關(guān)系時(shí),△≥0是前提條件。
3、條件多面時(shí)(如例5、例6)考慮要周全。
【布置作業(yè)】
1、當(dāng)m為何值時(shí),關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個(gè)正根?
2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實(shí)數(shù)根。
求證:關(guān)于x的方程
(m-5)x2-2(m+2)x + m=0一定有一個(gè)或兩個(gè)實(shí)數(shù)根。
考題匯編
1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個(gè)根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。
2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0
?。?)若方程的一個(gè)根為1,求m的值。
?。?)m=5時(shí),原方程是否有實(shí)數(shù)根,如果有,求出它的實(shí)數(shù)根;如果沒有,請(qǐng)說明理由。
3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個(gè)實(shí)數(shù)根,且兩根的平方和比兩根的積大33,求m的值。
4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個(gè)根,且x1+x2=6,x12+x22=20,求p和q的值。
實(shí)數(shù)數(shù)學(xué)初二上冊(cè)教案 3
教學(xué)目標(biāo)
1、了解無理數(shù)和實(shí)數(shù)的概念;會(huì)對(duì)實(shí)數(shù)按照一定的標(biāo)準(zhǔn)進(jìn)行分類,培養(yǎng)分類能力;
2、了解分類的標(biāo)準(zhǔn)與分類結(jié)果的相關(guān)性,進(jìn)一步了解體會(huì)“集合”的含義;
3、了解實(shí)數(shù)范圍內(nèi)相反數(shù)和絕對(duì)值的意。
教學(xué)難點(diǎn)
理解實(shí)數(shù)的概念。
知識(shí)重點(diǎn)
正確理解實(shí)數(shù)的概念。
教學(xué)過程
設(shè)計(jì)理念
試一試
學(xué)生以前學(xué)過有理數(shù),可以請(qǐng)學(xué)生簡單地說一說有理數(shù)的基本概念、分類
試一試
1、使用計(jì)算器計(jì)算,把下列有理數(shù)寫成小數(shù)的形式,你有什么發(fā)現(xiàn)?
動(dòng)手試一試,說說你的發(fā)現(xiàn)并與同學(xué)交流
?。ńY(jié)論:上面的有理數(shù)都可以寫成有限小數(shù)或無限循環(huán)小數(shù)的形式)
可以在此基礎(chǔ)上啟發(fā)學(xué)生得到結(jié)論:任何一個(gè)有理數(shù)都可以寫成有限小數(shù)或無限循環(huán)小數(shù)的形式
2、追問:任何一個(gè)有限小數(shù)或無限循環(huán)小數(shù)都能化成分?jǐn)?shù)嗎?
?。ㄕn件展示)
閱讀下列材料:
設(shè)x=0.=0.333…①
則10x=3.333…②
則②-①得9x-3,即x=
即0.=0.333…=
根據(jù)上面提供的方法,你能把0,0化成分?jǐn)?shù)嗎?且想一想是不是任何無限循環(huán)小數(shù)都可以化成分?jǐn)?shù)?
在此基礎(chǔ)上與學(xué)生一起得到結(jié)論:任何一個(gè)有限小數(shù)或無限循環(huán)小數(shù)都能化成分?jǐn)?shù),所以任何一個(gè)有限小數(shù)或無限循環(huán)小數(shù)都是有理數(shù)。
學(xué)生自己回憶有理數(shù)的分類,為引入實(shí)數(shù)的分類作好鋪墊
讓學(xué)生動(dòng)手實(shí)踐,自己去發(fā)現(xiàn)并學(xué)會(huì)與他人交流
在學(xué)生解決了一個(gè)問題后,層層深入地提出了一個(gè)對(duì)學(xué)生
有更大挑戰(zhàn)性的問題,激發(fā)學(xué)生學(xué)習(xí)探索的興趣
引入新知
1、在前面兩節(jié)的學(xué)習(xí)中,我們知道,許多數(shù)的平方根和立方根都是無限不循環(huán)小數(shù),它們不能化成分?jǐn)?shù),我們給無限不循環(huán)小數(shù)起個(gè)名,叫“無理數(shù)”,有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù)
例1(1)你能嘗試著找出三個(gè)無理數(shù)來嗎?
?。?)下列各數(shù)中,哪些是有理數(shù)?哪些是無理數(shù)?
解決問題后,可以再問同學(xué):“用根號(hào)形式表示的數(shù)一定是無理數(shù)嗎?”
2、實(shí)數(shù)的分類
?。?)畫一畫
學(xué)生自己回憶并畫出有理數(shù)的分類圖
(2)挑戰(zhàn)自己
請(qǐng)學(xué)生嘗試畫出實(shí)數(shù)的分類圖
例2把下列各數(shù)填人相應(yīng)的集合內(nèi):
整數(shù)集合{…}
負(fù)分?jǐn)?shù)集合{…}
正數(shù)集合{…}
負(fù)數(shù)集合{…}
有理數(shù)集合{…}
無理數(shù)集合{…}
給出無理數(shù)定義后,請(qǐng)學(xué)生自己找找無理數(shù),讓學(xué)生在尋找的過程中,體會(huì)無理數(shù)的基本特征
應(yīng)該讓學(xué)生自己小結(jié)得出結(jié)論:判斷一個(gè)數(shù)是有理數(shù)還是
無理數(shù),應(yīng)該從它們的定義去辯別,而不能從形式上去分辯
學(xué)生自己嘗試畫出實(shí)數(shù)的'分類圖,體會(huì)依據(jù)分類標(biāo)準(zhǔn)的不
同會(huì)有不同的分法
探一探
我們知道,在有理數(shù)中只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),例如3和-3,和-等,實(shí)數(shù)的相反數(shù)的意義與有理數(shù)一樣。
請(qǐng)學(xué)生回憶在有理數(shù)中絕對(duì)值的意義。例如|-3|=3|0|=0||=等等,實(shí)數(shù)絕對(duì)值的意義和有理數(shù)的絕對(duì)值的意義相同。
試一試完成課本第176頁思考題
引導(dǎo)學(xué)生類比地歸納出下列結(jié)論:
數(shù)a的相反數(shù)是-a
一個(gè)正實(shí)數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)實(shí)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0.
隨著數(shù)從有理數(shù)擴(kuò)充到實(shí)數(shù),原來在有理數(shù)范圍里討論的相反數(shù)、絕對(duì)值等,自然地拓展到實(shí)數(shù)范圍內(nèi)。
練一練
例1求下列各數(shù)的相反數(shù)和絕對(duì)值:
2.5,0,3
例2一個(gè)數(shù)的絕對(duì)值是,求這個(gè)數(shù)。
例3求下列各式的實(shí)數(shù)x:
(1)|x|=|-|;
(2)求滿足x≤4的整數(shù)x
教學(xué)中應(yīng)該給學(xué)生充分發(fā)表自己想法的時(shí)間,自己體會(huì)有理數(shù)關(guān)于相反數(shù)和絕對(duì)值的意義同樣適用于實(shí)數(shù)。
小結(jié)與作業(yè)
布置作業(yè)
必做:課本第178頁習(xí)題10.3第1、2、3題;
選做:課本第179頁習(xí)題10.3第7題
實(shí)數(shù)數(shù)學(xué)初二上冊(cè)教案 4
教學(xué)目標(biāo)
1、通過實(shí)際操作,了解什么叫做軸對(duì)稱變換。
2、如何作出一個(gè)圖形關(guān)于一條直線的軸對(duì)稱圖形。
教學(xué)重點(diǎn)
1、軸對(duì)稱變換的定義。
2、能夠按要求作出簡單平面圖形經(jīng)過軸對(duì)稱后的圖形。
教學(xué)難點(diǎn)
1、作出簡單平面圖形關(guān)于直線的軸對(duì)稱圖形。
2、利用軸對(duì)稱進(jìn)行一些圖案設(shè)計(jì)。
教學(xué)過程
?、瘛⒃O(shè)置情境,引入新課
在前一個(gè)章節(jié),我們學(xué)習(xí)了軸對(duì)稱圖形以及軸對(duì)稱圖形的一些相關(guān)的性質(zhì)問題。在上節(jié)課的作業(yè)中,我們有個(gè)要求,讓同學(xué)們自己思考一種作軸對(duì)稱圖形的方法,現(xiàn)在來看一下同學(xué)們完成的怎么樣。
將一張紙對(duì)折后,用針尖在紙上扎出一個(gè)圖案,將紙打開后鋪平,得到的兩個(gè)圖案是關(guān)于折痕成軸對(duì)稱的圖形。
準(zhǔn)備一張質(zhì)地較軟,吸水性能好的紙或報(bào)紙,在紙的一側(cè)上滴上一滴墨水,將紙迅速對(duì)折,壓平,并且手指壓出清晰的折痕。再將紙打開后鋪平,位于折痕兩側(cè)的墨跡圖案也是對(duì)稱的
這節(jié)課我們就是來作簡單平面圖形經(jīng)過軸對(duì)稱后的圖形。
?、颉?dǎo)入新課
由我們已經(jīng)學(xué)過的知識(shí)知道,連結(jié)任意一對(duì)對(duì)應(yīng)點(diǎn)的線段被對(duì)稱軸垂直平分。
類似地,我們也可以由一個(gè)圖形得到與它成軸對(duì)稱的另一個(gè)圖形,重復(fù)這個(gè)過程,可以得到美麗的圖案。
對(duì)稱軸方向和位置發(fā)生變化時(shí),得到的圖形的方向和位置也會(huì)發(fā)生變化。大家看大屏幕,從電腦演示的圖案變化中找出對(duì)稱軸的方向和位置,體會(huì)對(duì)稱軸方
向和位置的變化在圖案設(shè)計(jì)中的奇妙用途。
下面,同學(xué)們自己動(dòng)手在一張紙上畫一個(gè)圖形,將這張紙折疊描圖,再打開看看,得到了什么?改變折痕的位置并重復(fù)幾次,又得到了什么?同學(xué)們互相交流一下。
結(jié)論:由一個(gè)平面圖形呆以得到它關(guān)于一條直線L對(duì)稱的圖形,這個(gè)圖形與原圖形的形狀、大小完全相同;新圖形上的每一點(diǎn),都是原圖形上的某一點(diǎn)關(guān)于直線L的對(duì)稱點(diǎn);
連結(jié)任意一對(duì)對(duì)應(yīng)點(diǎn)的線段被對(duì)稱軸垂直平分。
我們把上面由一個(gè)平面圖形得到它的軸對(duì)稱圖形叫做軸對(duì)稱變換。
成軸對(duì)稱的兩個(gè)圖形中的任何一個(gè)可以看作由另一個(gè)圖形經(jīng)過軸對(duì)稱變換后得到。一個(gè)軸對(duì)稱圖形也可以看作以它的一部分為基礎(chǔ),經(jīng)軸對(duì)稱變換擴(kuò)展而成的
取一張長30厘米,寬6厘米的紙條,將它每3厘米一段,一正一反像“手風(fēng)琴”那樣折疊起來,并在折疊好的紙上畫上字母E,用小刀把畫出的字母E挖去,拉開“手風(fēng)琴”,你就可以得到以字母E為圖案的花邊。回答下列問題。
?。?)在你所得的花邊中,相鄰兩個(gè)圖案有什么關(guān)系?相間的兩個(gè)圖案又有什么關(guān)系?說說你的理由。
?。?)如果以相鄰兩個(gè)圖案為一組,每一組圖案之間有什么關(guān)系?三個(gè)圖案為一組呢?為什么?
?。?)在上面的活動(dòng)中,如果先將紙條縱向?qū)φ?,再折成“手風(fēng)琴”,然后繼續(xù)上面的步驟,此時(shí)會(huì)得到怎樣的花邊?它是軸對(duì)稱圖形嗎?先猜一猜,再做一做。
注:為了保證剪開后的紙條保持連結(jié),畫出的`圖案應(yīng)與折疊線稍遠(yuǎn)一些。
?、蟆㈦S堂練習(xí).
?。ㄒ唬⒁粡堈呅渭堁靥摼€對(duì)折折3次,得到一個(gè)多層的60°角形紙,用剪刀在折疊好的紙上隨意剪出一條線。
?。?)猜一猜,將紙打開后,你會(huì)得到怎樣的圖形?
?。?)這個(gè)圖形有幾條對(duì)稱軸?
?。?)如果想得到一個(gè)含有5條對(duì)稱軸的圖形,你應(yīng)取什么形狀的紙?應(yīng)如何折疊?
答案:
?。?)軸對(duì)稱圖形。
?。?)這個(gè)圖形至少有3條對(duì)稱軸。
?。?)取一個(gè)正十邊形的紙,沿它通過中心的五條對(duì)角線折疊五次,得到一個(gè)多層的36°角形紙,用剪刀在疊好的紙上任意剪出一條線,打開即可得到一個(gè)至少含有5條對(duì)稱軸的軸對(duì)稱圖形。
?。ǘ┗仡櫛竟?jié)課內(nèi)容,然后小結(jié)。
?、?、課時(shí)小結(jié)
本節(jié)課我們主要學(xué)習(xí)了如何通過軸對(duì)稱變換來作出一個(gè)圖形的軸對(duì)稱圖形,并且利用軸對(duì)稱變換來設(shè)計(jì)一些美麗的圖案。在利用軸對(duì)稱變換設(shè)計(jì)圖案時(shí),要注意運(yùn)用對(duì)稱軸位置和方向的變化,使我們?cè)O(shè)計(jì)出更新疑獨(dú)特的美麗圖案。
實(shí)數(shù)數(shù)學(xué)初二上冊(cè)教案 5
學(xué)習(xí)目標(biāo):
1、能借助數(shù)軸理解相反數(shù)和絕對(duì)值得意義,會(huì)求一個(gè)數(shù)的相反數(shù)與絕對(duì)值。
2、 理解實(shí)數(shù)的意義,能用數(shù)軸上的點(diǎn)表示數(shù)。
3、 了解平方根算數(shù)平方根、立方根的概念。
重點(diǎn):實(shí)數(shù)的分類。
難點(diǎn):絕對(duì)值的意義和運(yùn)用。
過程:
一、復(fù)習(xí)回顧實(shí)數(shù)的分類,方式:師生共同回顧后,師展示
二、自學(xué):
?。ㄒ唬┲R(shí)類:
1、相反數(shù)。a的相反數(shù)是,相反數(shù)等子本身的數(shù)量,若a、b互為相反數(shù),則。
2、倒數(shù)。a(a≠0)的倒數(shù)是。用負(fù)指數(shù)表示為沒有倒數(shù)。倒數(shù)等子本身的數(shù)是a、b互為倒數(shù),則
3、絕對(duì)值。絕對(duì)值等于本身的`數(shù)是,即
lal=
4、數(shù)軸。數(shù)軸的三要素為一一對(duì)應(yīng)。
5、實(shí)數(shù)大小的比較。
?。?)在數(shù)軸上表示兩個(gè)數(shù)的點(diǎn),左邊的點(diǎn)表示的數(shù)表示的數(shù)。
?。?)正數(shù)大于零;兩個(gè)正數(shù)絕對(duì)值大的較。兩個(gè)負(fù)數(shù)絕對(duì)值小的較
?。?)設(shè)a.b是任意兩實(shí)數(shù)。
若a-b>0,則b;若a-b=0,則b;若a-b<0,則b。
6、非負(fù)數(shù)的表現(xiàn)形式有
7、常見的幾個(gè)實(shí)數(shù):最小的自然數(shù)是,最大
的負(fù)整數(shù)是,絕對(duì)值最小的整數(shù)是
?。ǘ┻\(yùn)用類:
1、某水井水位最低時(shí)低于水平面5米,記做-5米,最高時(shí)低于水平面1米,則水井位h米中h的取值范圍是
2、若x的相反數(shù)是3,lyl=5,則-l-2l的倒數(shù)是
實(shí)數(shù)數(shù)學(xué)初二上冊(cè)教案 6
教學(xué)難點(diǎn):
絕對(duì)值。
教學(xué)過程:
一、復(fù)習(xí):
1、實(shí)數(shù)分類:方法(1) ,方法(2)
注:有限小數(shù)、無限循環(huán)小數(shù)是有理數(shù),可化為分?jǐn)?shù);無限不循環(huán)小數(shù)是無理數(shù)
例1判斷:
?。?)兩有理數(shù)的和、差、積、商是有理數(shù);
?。?)有理數(shù)與無理數(shù)的積是無理數(shù);
(3)有理數(shù)與無理數(shù)的和、差是無理數(shù);
?。?)小數(shù)都是有理數(shù);
?。?)零是整數(shù),是有理數(shù),是實(shí)數(shù),是自然數(shù);
(6)任何數(shù)的.平方是正數(shù);
?。?)實(shí)數(shù)與數(shù)軸上的點(diǎn)一一對(duì)應(yīng);
?。?)兩無理數(shù)的和是無理數(shù)。
例2 下列各數(shù)中:
-1,0, , ,1.101001 , , ,- , ,2, .
有理數(shù)集合{ …}; 正數(shù)集合{ …};
整數(shù)集合{ …}; 自然數(shù)集合{ …};
分?jǐn)?shù)集合{ …}; 無理數(shù)集合{ …};
絕對(duì)值最小的數(shù)的集合{ …};
2、絕對(duì)值: =
?。?)有條件化簡
例3、①當(dāng)1
?、赼,b,c為三角形三邊,化簡 ;
?、廴鐖D,化簡 + 。
?。?)無條件化簡
例4、化簡
解:步驟①找零點(diǎn);②分段;③討論。
例5、①已知實(shí)數(shù)abc在數(shù)軸上的位置如圖,化簡|a+b|-|c-b|的結(jié)果為
?、诋?dāng)-3<a<-1時(shí),化簡:|a+1|-|3-2a|-|3+a|
例6、閱讀下面材料并完成填空
你能比較兩個(gè)數(shù)20042005和20052004的大小嗎?為了解決這個(gè)問題先把問題一般化,既比較nn+1和(n+1)n的大?。ǖ恼麛?shù)),然后從分析=1,=2,=3,這些簡單的情況入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過規(guī)納,猜想出結(jié)論。
?。?)通過計(jì)算,比較下列①――⑦各組中兩個(gè)數(shù)的大小(在橫線上填“>、=、<”號(hào)”)
?、?2 21 ;②23 32;③34 43;④45 54;⑤56 65;⑥67 76
?、?8 87
(2)對(duì)第(1)小題的結(jié)果進(jìn)行歸納,猜想出nn+1和(n+1)n的大小關(guān)系是
(3)根據(jù)上面的歸納結(jié)果猜想得到的一般結(jié)論是: 20042005 20052004
練習(xí):(1)若a<-6,化簡 ;(2)若a<0,化簡 ;
(3)若 ;(4)若 = ;
(5)解方程 ;
(6)化簡:
實(shí)數(shù)數(shù)學(xué)初二上冊(cè)教案 7
一.教學(xué)目標(biāo)
知識(shí)與技能目標(biāo):掌握實(shí)數(shù)運(yùn)算的法則和運(yùn)算順序,會(huì)用計(jì)算器進(jìn)行簡單的混合運(yùn)算,并解決一些簡單的實(shí)際問題。
過程與方法目標(biāo):通過回顧有理數(shù)的運(yùn)算法則和運(yùn)算律,了解有理數(shù)的運(yùn)算法則和運(yùn)算律在實(shí)數(shù)范圍內(nèi)同樣適用。
情感與態(tài)度目標(biāo):通過計(jì)算器的使用,提高學(xué)生的應(yīng)用意識(shí);通過對(duì)實(shí)際問題的解決,體驗(yàn)數(shù)學(xué)的應(yīng)用性特點(diǎn)。
二.教學(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):掌握實(shí)數(shù)運(yùn)算的法則和順序。
教學(xué)難點(diǎn):例2的算式比較復(fù)雜,是本節(jié)課的難點(diǎn)。
三.教學(xué)過程
1.承上啟下,口答復(fù)習(xí).
師:請(qǐng)同學(xué)們快速口答下列幾個(gè)題目
?、?②③ ④⑤⑥⑦⑧
師:⑤--⑧這四個(gè)算式是屬于實(shí)數(shù)的運(yùn)算,同學(xué)們來思考一下:實(shí)數(shù)的.運(yùn)算與我們?cè)诘诙聦W(xué)習(xí)的有理數(shù)的運(yùn)算有什么相同與不同之處嗎?引出課題:實(shí)數(shù)的運(yùn)算
2.師生互動(dòng),講授新課
師:那我們先來回顧一下第二章都學(xué)習(xí)過哪些有理數(shù)的運(yùn)算法則和運(yùn)算律?我們把它總結(jié)出來。
加法減法乘法除法乘方
運(yùn)算法則加法法則減法法則乘法法則除法法則,除法轉(zhuǎn)化為乘法的法則乘方的法則
運(yùn)算律加法交換律和結(jié)合律乘法交換律;乘法結(jié)合律;分配律
師:下面請(qǐng)同學(xué)們思考這些運(yùn)算律和運(yùn)算法則在實(shí)數(shù)范圍內(nèi)是否仍然成立?請(qǐng)以四人為一小組討論,舉例來證明你們的結(jié)論。
(要求學(xué)生每種運(yùn)算法則和運(yùn)算律都要舉一個(gè)例子出來)
引導(dǎo)學(xué)生:實(shí)數(shù)的運(yùn)算與有理數(shù)的運(yùn)算之間就是增加了無理數(shù)的運(yùn)算,無理數(shù)的運(yùn)算是否滿足這些運(yùn)算律與運(yùn)算法則呢?
出示多組學(xué)生的例子,得出結(jié)論:數(shù)從有理數(shù)擴(kuò)展到實(shí)數(shù)后,有理數(shù)的運(yùn)算法則和運(yùn)算律在實(shí)數(shù)范圍同樣適用。
師:有理數(shù)的加,減,乘除的運(yùn)算法則在實(shí)數(shù)范圍內(nèi)適用,那么有理數(shù)混合運(yùn)算的法則是否也適用呢?請(qǐng)同學(xué)們與自己的同桌進(jìn)行討論,同樣要舉例說明。
(要引導(dǎo)學(xué)生思考:在實(shí)數(shù)范圍內(nèi),有哪幾種運(yùn)算?這些運(yùn)算的順序與有理數(shù)混合運(yùn)算的順序有什么相同與不同之處?)
選擇合適的例子說明:在實(shí)數(shù)范圍內(nèi),增加了開方運(yùn)算,并且開方運(yùn)算與乘方運(yùn)算是同級(jí)運(yùn)算。
得出結(jié)論:實(shí)數(shù)運(yùn)算的順序是先算乘方和開方,再算乘除,最后算加減,如果遇到括號(hào),則先進(jìn)行括號(hào)里的運(yùn)算。
例1計(jì)算:
(1)(精確到0.001)
(2)(結(jié)果保留4個(gè)有效數(shù)字)
注意:在使用計(jì)算器的情況下,一般先算出最終結(jié)果后,再將顯示的數(shù)據(jù)按預(yù)定精確度取近似值。如果無法避免中間運(yùn)算取近似值,那么中間運(yùn)算通常比預(yù)定精確度多取1位,或多取1個(gè)有效數(shù)字。
例2計(jì)算:(精確到0.01)
先讓學(xué)生討論應(yīng)該如何解答這道題目,然后由老師引導(dǎo)觀察算式,分析算式的組成;考慮能否使用運(yùn)算律簡化算式;如能簡化算式,則應(yīng)先化簡,再用計(jì)算器計(jì)算,這樣能使計(jì)算方便,避免中間運(yùn)算取近似值。
3.、活動(dòng)與探究:
一個(gè)物體自由下落時(shí),它所經(jīng)過的距離h(米)和時(shí)間(秒)之間的關(guān)系我們可以用來估計(jì)。假設(shè)物體從5米的高度自由下落,那么這個(gè)物體每經(jīng)過1米需要多少時(shí)間(精確到0.01)?
距離第1米第2米第3米第4米第5米
時(shí)間
4.練一練:課內(nèi)練習(xí)1、2
5..這節(jié)課你有什么收獲?
實(shí)數(shù)運(yùn)算的法則和順序,會(huì)用計(jì)算器來進(jìn)行簡單的混合運(yùn)算。
6..布置作業(yè)
書本84頁1、2、3、4、5、6(選做)及作業(yè)本
四.教學(xué)反思
例2要先運(yùn)算、化簡、再用計(jì)算器計(jì)算,能使計(jì)算方便,避免中間運(yùn)算取近似值?;喨菀族e(cuò)。
實(shí)數(shù)數(shù)學(xué)初二上冊(cè)教案 8
知識(shí)與技能:
掌握本章基本概念與運(yùn)算,能用本章知識(shí)解決實(shí)際問題。
過程與方法:
通過梳理本章知識(shí)點(diǎn),挖掘知識(shí)點(diǎn)間的聯(lián)系,并應(yīng)用于實(shí)際解題中。
情感態(tài)度:
領(lǐng)悟分類討論思想,學(xué)會(huì)類比學(xué)習(xí)的方法。
教學(xué)重點(diǎn):
本章知識(shí)梳理及掌握基本知識(shí)點(diǎn)。
教學(xué)難點(diǎn):
應(yīng)用本章知識(shí)解決實(shí)際與綜合問題。
一、知識(shí)框圖,整體把握
教學(xué)說明:
1、通過構(gòu)建框圖,幫助學(xué)生回憶本節(jié)所有基本概念和基本方法。
2、幫助學(xué)生找出知識(shí)間聯(lián)系,如平方與開平方,平方根與立方根,有理數(shù)與實(shí)數(shù)等等。
二、釋疑解惑,加深理解
1、利用平方根的`概念解題
在利用平方根的概念解題時(shí),主要涉及平方根的性質(zhì):正數(shù)有兩個(gè)平方根,且它們互為相反數(shù);以及平方根的非負(fù)性:被開方數(shù)為非負(fù)數(shù),算術(shù)平方根也為非負(fù)數(shù)。
例1已知某數(shù)的平方根是a+3及2a―12,求這個(gè)數(shù)。
分析:由題意可知,a+3與2a―12互為相反數(shù),則它們的和為0。解:根據(jù)題意可得,a+3+2a―12=0
解得a=3
∴a+3=6,2a―12=―6
∴這個(gè)數(shù)是36
教學(xué)說明:負(fù)數(shù)沒有平方根,非負(fù)數(shù)才有平方根,它們互為相反數(shù),而0是其中的一個(gè)特例。
比較實(shí)數(shù)的大小
除常用的法則比較實(shí)數(shù)大小外,有時(shí)要根據(jù)題目特點(diǎn)選擇特別方法。
本文鏈接:http://www.svtrjb.com/v-34-3519.html實(shí)數(shù)數(shù)學(xué)初二上冊(cè)教案
相關(guān)文章:
毛筆書法教學(xué)課件11-24
農(nóng)民外出務(wù)工情況調(diào)查報(bào)告08-28
暖心早安朋友圈08-31
描寫桃花的作文11-22
我的課余生活優(yōu)秀作文11-09
描寫蒲公英的作文10-26
描寫黃昏的優(yōu)美段落07-26